主持关于争议话题的辩论

Leading a Debate on a Controversial Topic

一位学者在其领域内主持一场关于有争议话题的结构化辩论,促进讨论,调和对立观点,并总结主要论点。

对话轮次
9
预计时长
4 分钟
场景
学术讨论

完整对话内容

以下是该情境的完整英语对话,包含中英文对照

微信小程序体验

🎤 语音播放 • 🗣️ 口语练习 • 🤖 AI智能评测 • 📊 学习进度

👨
Moderator
第 1 轮
Welcome everyone to today's debate on the ethical implications of AI in medical diagnostics. We have compelling arguments from both sides. To start, let's hear the opening statement from the affirmative team, Dr. Chen.
English
欢迎大家参加今天关于人工智能在医疗诊断中伦理影响的辩论。我们有双方都有力的论点。首先,让我们听听正方陈博士的开场陈述。
中文翻译
在微信小程序中可以播放语音和练习口语
👩
Dr. Chen (Affirmative)
第 2 轮
Thank you. Our central argument is that AI, when properly regulated, offers unparalleled diagnostic accuracy, leading to earlier detection and better patient outcomes, thereby fulfilling our ethical imperative to improve healthcare. The benefits far outweigh the risks.
English
谢谢。我们的核心论点是,人工智能在适当监管下,能提供无与伦比的诊断准确性,从而实现早期发现和更好的患者结果,从而履行我们改善医疗保健的伦理义务。其益处远远超过风险。
中文翻译
在微信小程序中可以播放语音和练习口语
👨
Moderator
第 3 轮
Thank you, Dr. Chen. Now, for the opposing viewpoint, Dr. Lee, could you present your opening statement?
English
谢谢陈博士。现在,对于反方观点,李博士,您能陈述您的开场白吗?
中文翻译
在微信小程序中可以播放语音和练习口语
👨
Dr. Lee (Negative)
第 4 轮
Certainly. While acknowledging AI's potential, we contend that its inherent 'black box' nature poses significant challenges to transparency and accountability, particularly when diagnostic errors occur. Furthermore, the erosion of human judgment and potential biases in training data raise serious ethical concerns that could undermine patient trust.
English
当然。我们承认人工智能的潜力,但我们认为其固有的“黑箱”性质对透明度和问责制构成了重大挑战,尤其是在发生诊断错误时。此外,人类判断力的削弱和训练数据中潜在的偏见引发了严重的伦理问题,这可能会损害患者的信任。
中文翻译
在微信小程序中可以播放语音和练习口语
👨
Moderator
第 5 轮
Thank you, Dr. Lee. Both sides have laid out their foundational arguments. Dr. Chen, in response to Dr. Lee's point about the 'black box' nature, how do you address concerns regarding transparency and accountability?
English
谢谢李博士。双方都阐述了他们的基本论点。陈博士,针对李博士关于“黑箱”性质的观点,您如何解决透明度和问责制方面的担忧?
中文翻译
在微信小程序中可以播放语音和练习口语
👩
Dr. Chen (Affirmative)
第 6 轮
That's a valid concern, and indeed, research is heavily focused on developing explainable AI models. Furthermore, the human clinician always remains in the loop as the final decision-maker, ensuring accountability. We're not advocating for fully autonomous AI, but rather AI as a powerful assistive tool.
English
这是一个合理的担忧,事实上,研究正在大力关注开发可解释的人工智能模型。此外,人类临床医生始终作为最终决策者参与其中,确保问责制。我们不提倡完全自主的人工智能,而是将其作为一种强大的辅助工具。
中文翻译
在微信小程序中可以播放语音和练习口语
👨
Moderator
第 7 轮
Dr. Lee, your rebuttal on Dr. Chen's point about human oversight?
English
李博士,您对陈博士关于人为监督的观点的反驳?
中文翻译
在微信小程序中可以播放语音和练习口语
👨
Dr. Lee (Negative)
第 8 轮
While human oversight is crucial, we must consider the desensitization effect. Over-reliance could lead to a decline in critical thinking skills, potentially masking subtle errors from AI. And concerning explainable AI, it's still largely theoretical in complex medical scenarios, not yet a practical solution for widespread ethical deployment.
English
虽然人为监督至关重要,但我们必须考虑去敏感化效应。过度依赖可能导致批判性思维能力的下降,从而可能掩盖人工智能的细微错误。至于可解释的人工智能,在复杂的医疗场景中,它仍然 largely 停留在理论层面,尚未成为广泛伦理部署的实用解决方案。
中文翻译
在微信小程序中可以播放语音和练习口语
👨
Moderator
第 9 轮
Excellent points from both sides. We are nearing the end of our allotted time. Before we conclude, I'd like to summarize the core tension: the undeniable efficiency and accuracy potential of AI versus the profound ethical questions surrounding transparency, accountability, and the human element. Thank you, Dr. Chen and Dr. Lee, for a truly illuminating discussion.
English
双方的观点都非常精彩。我们的时间所剩无几。在结束之前,我想总结一下核心矛盾:人工智能不可否认的效率和准确性潜力,以及围绕透明度、问责制和人为因素的深刻伦理问题。感谢陈博士和李博士,带来了一场真正富有启发性的讨论。
中文翻译
在微信小程序中可以播放语音和练习口语
🎯

开始语音练习

在微信小程序中,您可以跟读这些对话,获得AI智能评测反馈,提升发音准确度

微信搜索
"英语情景说"
语音练习
AI智能评测