参与专题讨论
Participating in a Panel Discussion
一位学者参加了一个关于特定主题的小组讨论。他们需要简明扼要地阐述他们的观点,回答主持人及听众的问题,并与其他小组成员进行动态的思想交流。
对话轮次
8
预计时长
4 分钟
场景
学术演讲
完整对话内容
以下是该情境的完整英语对话,包含中英文对照
微信小程序体验
🎤 语音播放 • 🗣️ 口语练习 • 🤖 AI智能评测 • 📊 学习进度
👩
Moderator
第 1 轮
Welcome back, everyone. Dr. Chen, building on your recent research, could you briefly elaborate on the implications of AI in sustainable urban planning, perhaps offering a fresh perspective that challenges existing paradigms?
English
欢迎大家回来。陈博士,根据您最近的研究,您能否简要阐述人工智能在可持续城市规划中的影响,或许可以提出一个挑战现有范式的新颖观点?
中文翻译
在微信小程序中可以播放语音和练习口语
👨
Dr. Chen
第 2 轮
Thank you, Sarah. Indeed. While much of the dialogue around AI in urban planning focuses on efficiency and optimization, I'd like to pivot to its potential in fostering what I call 'adaptive resilience.' This is about AI's capacity to predict and respond to unforeseen environmental shifts and social dynamics, moving beyond static master plans to a continuous, learning urban ecosystem.
English
谢谢你,莎拉。确实如此。虽然关于人工智能在城市规划中的许多讨论都集中在效率和优化上,但我想把它转向它在培养我所说的“适应性韧性”方面的潜力。这关乎人工智能预测和响应不可预见的环境变化和社会动态的能力,从静态总体规划转向一个持续学习的城市生态系统。
中文翻译
在微信小程序中可以播放语音和练习口语
👩
Panelist 1
第 3 轮
That's a fascinating reframe, Dr. Chen. However, how do you address the inherent 'black box' problem with AI, particularly when human well-being is at stake? The predictive power is immense, but the interpretability often falls short.
English
陈博士,这是一个引人入胜的重新构建。然而,您如何解决人工智能固有的“黑箱”问题,特别是在人类福祉岌岌可危的时候?预测能力是巨大的,但可解释性往往不足。
中文翻译
在微信小程序中可以播放语音和练习口语
👨
Dr. Chen
第 4 轮
That's a crucial point, Emma. My research suggests coupling advanced AI models with explainable AI, or XAI, frameworks. This isn't just about output, but understanding the decision-making process. Furthermore, it necessitates robust participatory design processes, integrating community feedback loops to mitigate algorithmic bias and enhance transparency.
English
这是一个关键点,艾玛。我的研究表明,将先进的人工智能模型与可解释人工智能(XAI)框架相结合。这不仅仅是关于输出,更是关于理解决策过程。此外,这还需要健全的参与式设计流程,整合社区反馈循环以减轻算法偏差并提高透明度。
中文翻译
在微信小程序中可以播放语音和练习口语
👩
Moderator
第 5 轮
Excellent point on XAI and participatory design. We have a question from the audience: 'Given the ethical concerns raised, what specific policy recommendations would you propose to govern the deployment of AI in urban planning to ensure equitable outcomes for all residents?'
English
关于XAI和参与式设计的观点非常精彩。我们有一个来自观众的问题:“考虑到提出的伦理问题,您会提出哪些具体的政策建议来管理人工智能在城市规划中的部署,以确保所有居民的公平结果?”
中文翻译
在微信小程序中可以播放语音和练习口语
👨
Dr. Chen
第 6 轮
That's a critical question. First, establishing mandatory AI ethics review boards, similar to institutional review boards for human subjects research, is paramount. Second, developing open-source data standards and sharing protocols to prevent data monopolies and foster collaborative innovation. And third, investing in public education to bridge the knowledge gap and empower citizens to engage meaningfully with these technologies.
English
这是一个非常重要的问题。首先,建立强制性的人工智能伦理审查委员会,类似于人类受试者研究的机构审查委员会,至关重要。其次,开发开源数据标准和共享协议,以防止数据垄断并促进协作创新。第三,投资公共教育,弥合知识鸿沟,使公民能够有意义地参与这些技术。
中文翻译
在微信小程序中可以播放语音和练习口语
👨
Panelist 2
第 7 轮
Dr. Chen, to build on that, beyond policy, what about the practical challenges of integrating these diverse data streams? Many municipalities struggle with legacy systems and data silos. How do we move from theoretical recommendations to scalable implementation?
English
陈博士,在此基础上,除了政策之外,整合这些多样化数据流的实际挑战又如何呢?许多市政当局都在与遗留系统和数据孤岛作斗争。我们如何从理论建议转向可扩展的实施?
中文翻译
在微信小程序中可以播放语音和练习口语
👨
Dr. Chen
第 8 轮
You've hit on a significant bottleneck, David. I advocate for a phased, modular approach. Instead of a 'big bang' deployment, start with pilot projects focusing on specific, high-impact areas, proving the concept and building local capacity. Secondly, incentivize inter-departmental data sharing through clear service level agreements and a shared governance model for urban data platforms.
English
你提到了一个重要的瓶颈,大卫。我提倡分阶段、模块化的方法。不要进行“大爆炸式”部署,而是从针对特定、高影响力领域的试点项目开始,验证概念并建立本地能力。其次,通过明确的服务级别协议和城市数据平台的共享治理模式,激励部门间的数据共享。
中文翻译
在微信小程序中可以播放语音和练习口语
🎯
开始语音练习
在微信小程序中,您可以跟读这些对话,获得AI智能评测反馈,提升发音准确度
微信搜索
"英语情景说"
语音练习
AI智能评测